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ABSTRACT

Peripapillary atrophy (PPA) is a clinical finding that reflects
atrophy of the retinal layer and retinal pigment epithelium and
it is a symptom related to many diseases. The shape and
region area indicate the pathologic severity of myopia and
glaucoma. So it is important to segment PPA area to ana-
lyze the progression of these diseases. The shape of PPA area
is mostly crescent. In order to combine the prior knowledge,
a PPA segmentation method is proposed with a novel active
shape model (ASM) loss. The shape constraint is introduced
to improve the segmentation accuracy. It is realized by the
proposed ASM loss module, which contains three parts, θ
predictor, b predictor and an affine transformation module.
Our approach is evaluated on a clinical dataset. Extensive
experiments demonstrate that our method provides good per-
formance both qualitatively and quantitatively.

Index Terms— Active shape model (ASM), Peripapillary
atrophy (PPA), Segmentation

1. INTRODUCTION

Peripapillary atrophy (PPA) is also called the optic disc cres-
cent, and it is a symptom related to many diseases such as my-
opia, glaucoma, and intracranial tumors [1]. PPA can provide
an alarm for implementing an intervention to slow down the
disease progression at an early stage [2]. Therefore, monitor-
ing PPA area is very helpful for screening some eye diseases.
PPA area can be observed through non-invasive fundus im-
ages, but manual detection and quantification of PPA in reti-
nal fundus images are tedious and time-consuming. Based
on the above reasons, it is very necessary to propose a fully
automatic PPA segmentation algorithm.

Some methods of PPA segmentation have been proposed.
Lu et al. [3] proposed a method that combines scanning filter,
thresholding, region growing as well as a modified Chan-Vese
model with a shape constraint to segment and quantify optic
disk (OD) and PPA. Li et al. [4] utilized multiple evenly ori-
ented radial lines to detect OD and PPA boundary simultane-
ously, which profile PPA region. Chai et al. [5] proposed a
PPA segmentation using a multi-task fully convolutional net-
work.
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Convolutional neural network (CNN) combined with
shape constraint has been utilized to further improve medical
image segmentation. Oktay et al. [6] proposed a generic
training strategy that incorporates anatomical prior knowl-
edge into CNN through a new regularization model using an
encoding scheme. Fan et al. [7] proposed a method which
incorporates active shape model (ASM)-derived information
for the segmentation of the intra-cochlear anatomy in head
CT images. Tilborghs et al. [8] performed left ventricle and
myocardial segmentation by regression of pose and shape
parameters derived from a statistical shape model.

In this paper, we propose a PPA segmentation method
based on ASM loss. The contributions of our approach can
be summarized as follows. (1) Unlike previous works that
need to detect the PPA and OD areas simultaneously, we di-
rectly segment the PPA area. (2) Because the PPA area is
mostly crescent-shaped, we are inspired by ASM method [9]
and propose the ASM loss which is a shape constrain by cas-
cading ASM loss module after the baseline segmentation net-
work. (3) We have carried out extensive experiments on a
private clinical dataset of 50 fundus images to evaluate our
approach. The experimental results show that our approach
achieves superior performance compared with other methods.

2. METHODOLOGY

We propose a novel PPA segmentation method learning with
ASM loss that adds shape constraints by cascading a module
after the baseline segmentation network. In this section, we
will first introduce the active shape model (ASM) which leads
to the proposed ASM loss and describe the whole method we
use to segment PPA.

2.1. Active Shape Model (ASM)

ASM is a point-based distribution model. The structure of the
image can be represented by a series of dots. This means that
ASM can be used to extract feature points of objects and can
be used as a form of representing object features.

In the theory of ASM, an image is selected as the stan-
dard reference at the beginning, and all the data including
the standard one is sampled by n pairs of sampling points
{(x1, y1), (x2, y2), ..., (xn, yn)}. Next, each image is aligned
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(a) The general structure of segmentation network

(b) Structure diagram of ASM loss module

Fig. 1. The overview framework for PPA segmentation.

to standard reference by an alignment operation performed
with translation, rotation and scaling in order to remove the
non-shape factors. The calculating equation is as follows:[

x
′

y
′

]
=s

[
cos(α) sin(α)
−sin(α) cos(α)

][
x
y

]
+

[
xm
ym

]
→
[
xstd
ystd

]
(1)

[
xm
ym

]
=

[
x̄−W/2
ȳ −H/2

]
(2)

where x = [x1, x2, ..., xn], y = [y1, y2, ..., yn] represent the
horizontal and vertical coordinates set of n samples respec-
tively, x

′
and y

′
represent the set of the horizontal and verti-

cal coordinates of the aligned sampling points, and the sub-
script std represents the standard reference. The parameters of
the alignment operation can be calculated by the least square
method.

Next, the shape model is established. The shape model
is obtained by PCA on the shape descriptor set of all training
data to perform dimension reduction. The expression of the
shape descriptor is shown in (3).

C = [x
′

1, x
′

2, ..., x
′

n, y
′

1, y
′

2, ..., y
′

n] (3)

After dimensionality reduction, we obtain k maximum
eigenvectors P and eigenvalues Λ, where P= [p1, p2, ..., pk],
k is the dimension retained after dimensionality reduction,
Λ= diag(λ1, λ2, ...λk).

The shape coefficient b is obtained by the following pro-
jection on k shape modes. By truncating each bi in b within
±a
√
λi.

b = [p1, p2, ..., pk]T (C− C̄) = PT (C− C̄) (4)

The corresponding constrained shape can be obtained
through the inverse operation of the above formula:

C = C̄ + Pb (5)

The results obtained through the above processing will be
used as the ground truth in Sec. 2.2.

2.2. ASMSeg

Fig. 1 shows the architecture of our proposed method called
ASMSeg, which involves the DRIU [10] as baseline and in-
troduces ASM loss by cascading an ASM loss module. The
ASM loss module contains two encoders and an affine trans-
formation operator as shown in Fig. 1(b).

The first encoder named as θ predictor learns the param-
eters of the affine matrix which is described in Eq. (6). The
meaning of the parameters in Eq. (6) is the same as in Eq. (1),
which is the concatenation of two matrices in Eq. (1).

θ =

[
s · cos(α) s · sin(α) xm
−s · sin(α) s · cos(α) ym

]
(6)

After the affine matrix is obtained, it is applied to the out-
put of baseline segmentation, so as to obtain the alignment
result of removing the influence of angle, size and position.
The second encoder called b predictor encrypts the aligned
result into shape coefficient b, where the meaning of b is the
same as Eq. (4).

The differences between the encoder predictions of θ and
b and their ground truths for the labelled segmentation shape,
both obtained using Eq. (6) and (4), are calculated separately
as the loss terms. Finally, the proposed ASM loss can be for-
mulated as:

LASM = Lθ + 10× Lb + Lalign (7)

where Lθ and Lb are loss terms updating the encoders. In
addition, we also include an align loss Lalign to restrict the
alignment, which can further improve the accuracy of param-
eters in the affine matrix. Among them, Lb must be multiplied
by the hyperparameters to make the above three items all at
the same magnitude. Empirically, the hyperparameter is se-
lected as 10.

The calculation formulas of Lθ, Lalign and Lb are shown
in Eq. (8)-(10), where θ, Yalign and b represent the ground
truth of affine matrix, alignment result and shape coefficient
respectively, and the parameters withˆrepresent the predicted
result.

Lθ =

n∑
i=1

(θi − θ̂i)2 (8)

Lalign = 1− 2|Yalign ∩ Ŷalign|
|Yalign|+ |Ŷalign|

(9)
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Fig. 2. The flow chart of ground truth generation process.

Lb =

n∑
i=1

(bi − b̂i)2 (10)

The final loss function is shown as follows. It contains
two parts, segmentation loss Lseg and ASM loss LASM :

L = Lseg + LASM (11)

Lseg = 1− 2|Y ∩ Ŷ |
|Y |+ |Ŷ |

(12)

where Y and Ŷ represent the ground truth and the segmen-
tation result. The input of the ASM loss module is Y and
the operations in it are all derivable, so ASM loss will im-
pose constraints on baseline segmentation network (DRIU) in
backpropagation.

3. EXPERIMENTS AND RESULTS

In this section, we first introduce the dataset and pre-processing
steps. The implementation details and the evaluation metrics
are given. After that, we compare our method with other
state-of-the-art methods.

3.1. Dataset description and Pre-processing

The dataset we use is provided by Beijing Tongren Hospi-
tal, which contains 200 clinical data. This dataset is collected
from primary school students in grades one to six with a cres-
cent PPA shape.

We randomly select 50 images as testing set, and the rest
as training set. For all the data, we first normalize them to
the right eye and extract the region of interest (ROI), and then
resize them to 512×512. ROI extraction first uses the method
of [11] to locate the center of OD, and then crop the ROI at
0.4 times the height of the fundus image.

The ground truth includes four parts, the PPA labeled by
experienced ophthalmologists, the affine matrix, the aligned
area of PPA region and the shape coefficient. The method to
obtain the ground truth refers to Sec. 2.1. The flow chart of
ground truth is shown in Fig. 2.

3.2. Implementation Details and Metrics

The code of our method is implemented using PyTorch. For
all experiments, 200 epochs are trained. The first 100 epochs
have a fixed learning rate of 0.0001, and the learning rate
for the last 100 epochs are linearly decreased, and finally de-
creased to 0. During training, all experiments are optimized
using Adam optimizer with the batch size of 8. And when
processing the data to generate the ground truth, the infor-
mation retention rate in PCA is selected as 99%, so the final
shape coefficient vector length is 12.

We use dice coefficient, precision (P), recall (R), accuracy
(ACC), IOU and mAP to evaluate PPA segmentation perfor-
mance. Since this segmentation task has only one target area
of PPA, mAP is equivalent to AP. Both Dice and IOU are
metrics to measure the similarity between the segmentation
results and the ground truth.

3.3. Comparison with other methods

We compare our method with DRIU [10], ACNN [6], Li et
al. [4], and ASM post-processing [9]. In the comparison ex-
periment, the regularization model in ACNN has the same
structure as the b predictor of our ASM loss module in or-
der to maintain fairness. The standard image, point sampling
method and ASM model in the post-processing method are all
the same as our method.

Table 1. Quantitative results compared with other methods

DRIU
[10]

ACNN
[6]

Li et al.
[4]

ASM post
processing

[9]

Ours w/o
Lalign

Ours

Dice 0.8006 0.8056 0.6370 0.8032 0.8071 0.8104
P 0.8084 0.8068 0.6319 0.8256 0.8125 0.8030
R 0.8049 0.8159 0.6813 0.7946 0.8122 0.8267

ACC 0.9906 0.9907 0.9793 0.9909 0.9908 0.9909
IOU 0.6729 0.6793 0.4859 0.6769 0.6810 0.6859
mAP 0.7745 0.8257 - - 0.7993 0.8358

Tab. 1 shows the quantitative results and Fig. 3 displays
the visual comparison between our method and others. The
method of Li et al. and ASM post-processing method can
output smoother results. This is because the method of Li et
al. uses the ellipse constraint, and the ASM post-processing
method reconstructs the shape coefficient. However, due to
the complicated brightness transformation around the OD, the
method of Li et al. visually has a large deviation from the
ground truth in the recognition of the boundary. Compared
with the proposed method, ASM post-processing method has
two disadvantages. Firstly, the noise of segmentation map
(e.g., the output of DRIU) will have a great negative impact
on the post-processing result. Secondly, it is time-consuming
compared with end-to-end segmentation methods due to the
sampling operations. On the other hand, our method improves
the performance by the proposed ASM module, especially the
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Fig. 3. Visual results compared with other methods. In the re-
sult, the red is the ground truth, the green is the segmentation
result, and the yellow is the overlap area.

variant with the alignment component. With the help of align-
ment, accurate parameters of affine matrix can be obtained by
the image-level constraints.

4. CONCLUSION

In this paper, we propose a method of adding ASM loss to the
segmentation network to improve segmentation accuracy by
introducing shape constraints. This loss is added by cascading
the ASM loss module after the segmentation network. The
method we proposed has achieved excellent results in both
quantitative and qualitative analysis.
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